Approximate Lax-Wendroff discontinuous Galerkin methods for hyperbolic conservation laws

نویسندگان

  • Raimund Bürger
  • Kenettinkara Sudarshan Kumar
  • David Zorío
چکیده

The Lax-Wendro↵ time discretization is an alternative method to the popular total variation diminishing Runge-Kutta time discretization of discontinuous Galerkin schemes for the numerical solution of hyperbolic conservation laws. The resulting fully discrete schemes are known as LWDG and RKDG methods, respectively. Although LWDG methods are in general more compact and e cient than RKDG methods of comparable order of accuracy, the formulation of LWDG methods involves the successive computation of exact flux derivatives. This procedure allows to construct schemes of arbitrary formal order of accuracy in space and time. A new approximation procedure avoids the computation of exact flux derivatives. The resulting approximate LWDG schemes, addressed as ALDWG schemes, are easier to implement than their original LWDG versions. Numerical results for the scalar and system cases in one and two space dimensions indicate that ALWDG methods are more e cient in terms of error reduction per CPU time than LWDG method of the same order of accuracy. Moreover, increasing the order of accuracy leads to substantial reductions of numerical error and gains in e ciency for solutions that vary smoothly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis and error estimates of Lax-Wendroff discontinuous Galerkin methods for linear conservation laws

In this paper, we analyze the Lax-Wendroff discontinuous Galerkin (LWDG) method for solving linear conservation laws. The method was originally proposed by Guo et al. in [11], where they applied local discontinuous Galerkin (LDG) techniques to approximate high order spatial derivatives in the Lax-Wendroff time discretization. We show that, under the standard CFL condition τ ≤ λh (where τ and h ...

متن کامل

Numerical solution of nonlinear hyperbolic conservation laws using exponential splines

Previous theoretical (McCartin 1989a) and computational (McCartin 1989b) results on exponential splines are herein applied to provide approximate solutions of high order accuracy to nonlinear hyperbolic conservation laws. The automatic selection of certain "tension" parameters associated with the exponential spline allows the sharp resolution of shocks and the suppression of any attendant oscil...

متن کامل

On local conservation of numerical methods for conservation laws

Abstract. In this paper we introduce a definition of the local conservation property for numerical methods solving time dependent conservation laws, which generalizes the classical local conservation definition. The motivation of our definition is the Lax-Wendroff theorem, and thus we prove it for locally conservative numerical schemes per our definition in one and two space dimensions. Several...

متن کامل

Local-Structure-Preserving Discontinuous Galerkin Methods with Lax-Wendroff Type Time Discretizations for Hamilton-Jacobi Equations

In this paper, a family of high order numerical methods are designed to solve the Hamilton-Jacobi equation for the viscosity solution. In particular, the methods start with a hyperbolic conservation law system closely related to the Hamilton-Jacobi equation. The compact one-step one-stage Lax-Wendroff type time discretization is then applied together with the local-structure-preserving disconti...

متن کامل

Convergence of difference schemes with high resolution for conservation laws

Abstract. We are concerned with the convergence of Lax-Wendroff type schemes with high resolution to the entropy solutions for conservation laws. These schemes include the original Lax-Wendroff scheme proposed by Lax and Wendroff in 1960 and its two step versions–the Richtmyer scheme and the MacCormack scheme. For the convex scalar conservation laws with algebraic growth flux functions, we prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2017